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THE ANGULAR RESPONSE OF A PARAMETRIC
ARRAY: ANALYTICAL SOLUTION
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A theoretical treatment is formulated for the angular dependence of an absorption-lim-
ited parametric array. This allows analytical results for the off-axis far field amplitude and
phase responses to be readily obtained. Experimental results show good agreement with
the theory.
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1. INTRODUCTION

Berktay [1] investigated the absorption-limited parametric array using Westervelt’s
source density method, to describe the self-modulation effects of pulsed sound signal. He
developed an expression for the on-axis, far field, time dependent transient pressure
produced by the parametric array. He pointed out that a primary carrier, with amplitude
modulated by an envelope f(t), produces a secondary signal in which the pattern is
described with 12( f 2)/1t2. This phenomenon is called self-demodulation.

Since Berktay’s theoretical explanation of self-demodulation, a number of experiments
have been carried out. Moffett and co-workers [2] experimentally verified the existence of
transient signals generated during the propagation of large-amplitude pulses. Their
measurements of the transient signal were performed along the axis of propagation of a
10 MHz pulse in carbon tetrachloride (CCl4). They also experimentally investigated the
angular dependence of the transient parametric array generated by 20 MHz pulses in water
[3].

A theoretical investigation of the angular dependence of the transient parametric array
by using a frequency domain method, temporal Fourier decomposition, was reported by
Moffett and Mellen [4]. Later, Rolleigh [5] concluded that, for a spherical primary sound
field in which the directivity follows a Gaussian Law, the secondary sound field is
represented by the convolution of an input source function 12( f 2)/1t2, given by Berktay,
with the impulse response of the parametric array. Pace and Ceen [6] introduced a spatial
impulse response function of the parametric array which contains all geometry
information. They also showed that the secondary pressure waveform is a convolution of
the input source function 12( f 2)/1t2 with the spatial response function of the parametric
array. In particular, they investigated the transient parametric array where the primary
field was discontinuously terminated. Stepanishen and Koenigs [7] employed a
time-dependent Green function approach to present a formula for the far field secondary
pressure as a time convolution of a source function 12( f 2)/1t2 with a spatial and
time-dependent impulse response. The impulse response is shown to be a convolution of
an aperture-dependent impulse response of the planar projector with the impulse response
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of a shaded line array. More generally, Cervenka and Alais [8], using Fourier formalism,
presented a theoretical evaluation that gives the analytical expression of the secondary far
field generated by self-demodulation of a primary beam in which the space-time spectrum
is narrow. This theoretical result is a temporal convolution of the response of a source
function 12( f 2)/1t2 with another function that depends on the transducer shape and the
structure of the interaction zone.

More recently, Averkiou et al. [10] investigated the self-demodulation of pulsed sound
beams in a thermoviscous fluid by theory and experiment. The theory was based on the
Khokhlov–Zabolotskya–Kuznetov (KZK) non-linear parabolic wave equation. Their
attention was devoted to the case in which the absorption is sufficiently strong that the
non-linear interaction is relatively weak and restricted to the near field of sound beam.
Fro�ysa [11] again used the KZK non-linear parabolic wave equation and analyzed the
weakly non-linear propagation of a pulsed sound beam generated by a real sound source
in a homogeneous fluid. Both analytical and numerical solutions are presented and the
validity of Berktay’s model, self-demodulation of pulsed signal, was discussed. Other
investigators, Lee and Hamilton [12], using a time-domain algorithm that solves the KZK
non-linear parabolic wave equation, calculated waveforms through the shock region and
out to the far field locations where the non-linearly generated low frequency components
dominate.

The above investigations, both theoretically and experimentally, tended to be focussed
on the angular amplitude responses and waveform shapes of the transient parametric
endfire array, rather then on its angular phase responses.

It should be noted that Trivett and Rogers [9] considered the arrival time of the
secondary signal. However, in their paper, the effects of linear attenuation of primary
signals have been neglected. Also their experimental set-up did not favour measuring
arrival time of the secondary signal, because they recorded only off-axis secondary
waveforms by simply aligning the hydrophone in an arc. So they were unable to observe
the difference of the arrival times at different off-axis angles. Both Stepanishen et al. [7],
and Fro�ysa [11], using numerical solutions, showed the arrival of a secondary signal
which exhibits a time history. However, their main objectives were to confirm that
Westervelt’s finding [13]: that is, as the off-axis angle increases, the secondary waveforms
approach the first derivative of the envelope function squared 1( f 2)/1t. Therefore, no
analytical and quantitative results were given as far as the angular phase response was
concerned.

It is interesting to note that Garrett et al. [14] discussed the phase characteristics of
parametric arrays. However, their research tended to be focussed on the near field of a
parametric array, rather than on the far field.

Parametric transduction is a non-linear process. The secondary signal is generated by
scattering of the primary field. From the non-linear acoustics point of view, the phase of
an off-axis secondary will not be identical to that of an on-axis secondary, though both
are created by the primary waves radiated on the main axis of the projector.

The analysis of on- and off-axis characteristics of a parametric array is important.
Not only will this enable one to evaluate the possible impact of this phase shift on the Phase
Shift Keying (PSK) modulation, but also will give a detailed physical picture of the forming
of the secondary radiation due to scattering of sound by sound.

In this paper, Westervelt’s source density approach is used to develop a
theoretical formula for the angular dependence of the absorption-limited parametric array.
Analytical results for the off-axis amplitude and phase response are presented.
Experimental results, which show reasonable agreement with the theory, are presented.
A primary frequency of 6·2 MHz was used to generate secondary frequency
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parametric sources at 270 kHz. The impact of phase shift of the secondary signal is also
addressed.

2. OFF-AXIS FAR FIELD SIMPLIFIED CASE

A projector in a fluid with a planar radiating surface, as shown in Figure 1, is considered.
The transmitted pulsed-carrier acoustic waves are collimated, plane and travelling along
the x-axis direction. The primary pressure at a point x at time t can be represented in the
form

pi (x, t)=P0 exp(−a0 x)f(t− x/c0) cos (v0 t− k0 x). (1)

Here, f(t) is the envelope function whose highest Fourier component has a very much lower
frequency than the carrier so that a0 can be used as the absorption coefficient for this
band-limited signal.

Non-linear interaction in a primary acoustic field results in a secondary radiation. The
source density function is

q(x, t)= (1/r2
0 c4

0 ) (1+B/2A)1(pi )2/1t, (2)

where

A= r0 c2
0 and B= r0 (12p/1r2)r= r0

. From equation (1), one obtains p2
i (x, t):

p2
i (x, t)= (1

2)P
2
0 exp(−2a0 x)f 2(t− x/c0) [1+cos (2v0 t−2k0 x)]. (3)

In equation (3), two components are obtained, one of which is a compression term without
carrier, which gives rise to the difference frequency pressure. The other component is a
band-limited signal at twice the carrier frequency. The scattered wave due to this
component can be neglected, since it will be attenuated very quickly. Substitution of
p2

i (x, t) given by equation (3) into the expression of the source density function q, equation
(2), gives

q(x, t)=
p2

0b

2r2
0c4

0
exp(−2a0 x)

1

1t$f 20t− x
c01%. (4)

The difference frequency pressure function, calculated from the general solution of
Westervelt’s inhomogenous wave equation [15], may be expressed as

pd (R� , t)=−
r0

4p

1

1t g g g q(t− r� /c0) exp(−ad r� )
r� dV. (5)

Figure 1. Collimated and plane waves geometry.
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Equation (5) differs slightly from Westervelt’s equation. Here the absorption of the
difference wave is not ignored and ad is the absorption coefficient at the difference
frequency. Consider the far field geometry of the collimated plane wave model illustrated
in Figure 1, the difference wave pressure at an observation point in the x-o-y plane can
be simplified as

pd (R, u, t)=−
Sr0

4p

1

1t g
a

0

exp(−ad r)
r

q0x, t−
r
c01 dx, (6)

where S is the cross-sectional area of the collimated beam and r is the range from the
scattering point to the observation point. Substitution of q(x, t) from equation (4) into
equation (6) gives

pd (R, u, t)=−
p2

0Sb

8pr0 c4
0

12

1t2 $ g
a

0

exp(−2a0 x− ad r)
r

f 20t− x
c0

−
r
c01 dx%. (7)

For the far field assumption, r1R− x cos u for the phase and absorption term and r1R
for the range term in equation (7), which then becomes

pd(R, u, t)=−
p2

0Sb exp(−ad R)
8pr0 c4

0R
12

1t2 g
a

0

exp(−2a0 + ad cos u)x

× f 20t−R
c0

−
1−cos u

c0
x1 dx. (8)

Let u=[(1−cos u)/c0]x, so that dx=[c0 /(1−cos u)] du. If −2a0 + ad cos u1−2a0,
equation (8) can be simplified as

pd (R, u, t)=C
12

1t2 g
a

0

1
D

exp(−
1
D

u)f 20t−R
c0

− u1 du, (9)

where

C=−p2
0Sb exp(−ad R)/16pr0 a0 c4

0R, D=sin2 (u/2)/a0 c0 (10, 11)

If one introduces an impulse response function h(t, u) of the parametric array,

h(t, u)=6(1/D) exp([1/D]t)
0

,
,

te 0
tQ 07, (12)

then equation (9) can be expressed as

pd (R, u, t)=Ch(t, u)*
12

1t2 [ f 2(t−R/c0)]: (13)

that is, the secondary sound pressure can be expressed by a temporal convolution of the
parametric source function 12( f 2)/1t2 with the impulse response function h(t, u) of the
parametric array that depends only on the off-axis angle u, the absorption coefficient a0

and the sound speed c0.
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Note that equation (13) may be used to evaluate the absorption-limited on-axis and
off-axis far field characteristics of the secondary field. Consider the on-axis far field
pressure, in equation (9), when on-axis u:0 and D:0, so obviously

(1/D) exp(−(1/D)u)D:0 = d(u), (14)

where d(u) is the Dirac delta function. For on-axis projection, equation (9) can then be
expressed as

pd (R, 0, t)=C
12

1t2 g
a

0

d(u)f 2 0t−R
c0

− u1 du=C
12

1t2 f 20t−R
c01. (15)

This equation agrees with Berktay’s on-axis time dependent result [1], as corrected by
Moffett and co-workers [2].

3. SPECIAL CASE AND ANALYTICAL RESULTS

Consider the two-frequency case where the primary wave consists of two separate
frequency components with the same amplitude, namely,

cos (v0 +V/2)t+cos (v0 −V/2)t=2 cos (V/2)t cos v0 t. (16)

The envelope function f(t) can then be expressed as

f(t)= cos(Vt/2). (17)

Let t= t−R/c0. Substitution of equation (17) into equation (9) gives

pd (R, u, t)=
C
2D

12

1t2 g
a

0

exp0−u
D1 cos V(t− u) du (18)

Since exp(ix)= cos x+i sin x, equation (18) can be written in the form

pd (R, u, t)=
C
2D

12

1t2 Re 6g
a

0

exp$−u
D

+iV(t− u)% du7. (19)

Here Re denotes the real part. After integration and simplification, equation (19) can be
expressed as

pd (R, u, t)=A(u) cos [Vt−c(u)], (20)

where

A(u)=−(C/2) (1+D2V2)−1/2V2 =−(C/2)V2{1+ [(sin2 (u/2)/a0 c0)V]2}−1/2, (21)

c(u)= tan−1 (DV)= tan−1 [sin2 (u/2)V/a0 c0]. (22)

Note that the amplitude A(u) in equation (21) agrees with Westervelt’s result [15]. The
difference between Westervelt’s result and that presented here is that equation (20) includes
phase information of the difference frequency wave.

Analytical results are presented in Figure 2 for the normalized far field pressure over
a range of off-axis angles. All amplitudes are normalized to the on-axis value. A primary
frequency of 6·2 MHz was assumed, since this was the centre frequency of the projector
used for the experimental studies. A difference frequency of 270 kHz was chosen since it
represented a particularly sensitive operating frequency for the hydrophone used in the
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Figure 2. Parametric off-axis analytical result, fc =6.2 MHz, fd =270 kHz.

experiments. It can be seen from Figure 2 that the arrival time of the difference wave,
off-axis, is delayed compared with that on-axis. As the off-axis angle u increases, the delay
rapidly increases and finally converges to one quarter of the period of the difference wave,
which represents a 90° phase shift in equation (22).

4. EXPERIMENT

Experiments were performed in a water tank, with dimension 3 m×5 m×8 m, at The
University of Birmingham. The arrangement of the experiment is shown in Figure 3.

The projector, a baffled circular ceramic piston of 10 mm active diameter and 6·2 MHz
resonance frequency, was mounted in a holder that permitted it to be adjusted in the

Figure 3. Block diagram of experiment set-up.
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Figure 4. Transmitted modulated primary signal, fc =6.2 MHz, fd =270 kHz.

vertical plane. The holder was then mounted on a rotator that could be turned in
the horizontal plane by a stepper motor which was controlled by a microprocessor. The
oscillator (HP 8116A) provided a pulsed signal at the higher primary frequency and also
triggered a second oscillator (HP 8116A) to generate another pulsed signal at the lower
primary frequency whose phase is locked on to the higher primary frequency. These two
pulsed carrier signals were added together in the mixer to produce the required pulsed
modulated signal as defined by equation (16). The modulated signal was amplified (ENI
RF amplifier 240L) and finally applied to the projector. The voltage waveform applied to
the projector is shown in Figure 4.

The difference signals were received by a B&K hydrophone (B&K 8103) at a distance
of 7·5 m, passed through a pre-amplifier (Brookdeal precision AC amplifier 9452) with a
1 MHz active low pass filter, and recorded by a digital oscilloscope (LeCroy 9310L). The
received difference signal is shown in Figure 5. In order to increase SNR and thus improve
the accuracy of the measurements, a method of averaging 100 received waveforms was
employed in the digital oscilloscope. It was found that the average method is very effective
in increasing SNR for parametric transduction.

5. RESULTS, DISCUSSIONS AND LIMITATION OF THE THEORY

Figure 6 shows the results for the three-dimensional parametric off-axis amplitude and
phase response with a centre frequency of 6·2 MHz and difference frequency of 270 kHz
at a distance of 3 m. For better comparison with the theory, Figures 7 and 8 separately
show amplitude and phase responses for a difference frequency of 270 kHz at a distance
of 7·5 m. It can be seen that the measured amplitude and phase responses are in good
agreement with those predicted by the theory.

Figure 5. Received secondary signal, fd =270 kHz.
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Figure 6. Parametric off-axis experimental result, fc =6.2 MHz, fd =270 kHz.

The off-axis phase delay by comparison with the on-axis phase is a unique property of
parametric transduction. This can be explained as follows. Parametric transduction is a
secondary effect: the secondary sound wave results from the scattering of the primary
sound beam. Hence, the distance between scattering source and the off-axis point is
larger than that between the scattering source and the on-axis point, this can be
clearly seen in Figure 9. Because of this, the scattering off-axis secondary signal will be
delayed.

Consider next the influence of the off-axis phase shift on PSK modulation. If the
transmitter and receiver employ the same carrier and timing references, even in a
‘‘fixed–fixed’’ link, the steering of the transmit projector would make the maximum
received signal phase shift by 90° by comparison with on-axis one. In such a case,
Quadrature Phase Shift Keying (QPSK) would not work correctly. However, if the receiver

Figure 7. Parametric angular amplitude response; ——, analytic results; - - - -, experimental results.
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Figure 8. Parametric angular phase response; ——, analytic results; - - - -, experimental results.

system tracks the transmitted signal, this means that the carrier and timing references are
recovered by processing the received waveform. In such a case, the phase shift due to
rotating the projector would be offset by tracking. Because tracking is generally required
for PSK communications, it can be concluded that an off-axis phase shift, a term which
is not a function of time, would have negligible effect.

Finally, the validity of applying the present theory can be examined. From the derivation
of equation (9), it can be seen that two conditions are assumed to obtain the present theory:
(1) the primary waves are collimated and planar, or the virtual array distance RV is shorter
than the Rayleigh distance Rr : that is, the dominant interaction or secondary source
scattering takes place in the near field; accordingly, this parametric array should be
absorption limited; (2) the observation point should be far away from the transmitting
transducer; in such a case, the assumption r=R− x cos u can be satisfied.

In the experimental set-up, the primary frequency was f0 =6·2 MHz, the radius of the
piston a=5 mm, and the observation range r=7·5 m. According to Clay’s formula [16],
a0 =1·1 Np m−1, then RV =0·46 m, and also Rr =0·34 m. From the data presented here,
it can be seen clearly that condition (2) is sufficiently satisfied, since r�Rr , however,
condition (1) is not, since RV 1Rr , rather than RV QRr .

From the fact that the predicted results are generally in agreement with those of the
experiment, it can be concluded that condition (1) is not all that essential to the validity
of the present theory. The mechanisms behind this could be explained as follows: The key
point of condition (1) is that the primary waves are collimated and planar. Within the

Figure 9. Diagram showing off-axis parametric transduction delay, OP=OQ, PP' qQP'.
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Rayleigh distance, the primary waves can be thought of as collimated and planar.
However, in the transient region between Fresnel and Fraunhofer, there may exist a region
in which the primary waves can still be thought of as collimated and planar. Therefore,
the dominant non-linear interaction occurs in a collimated and planar region, even though
RV 1Rr or Rr is slightly shorter than RV .

Because the virtual array distance RV will be decreased more quickly than Rayleigh
distance Rr if the primary frequency is increased, it can be expected that increasing of the
primary frequency of the experiment will lead to a better agreement between theoretical
and experimental results.

In general, the present theory can be applied to the far field of an absorption-limited
parametric array. If the parametric array is not absorption-limited or the observation point
is well in the near field, then a simple analytical result may not be obtainable. In such a
case, more general solution, numerical solution, should be applied. This will be presented
in a further publication.

6. CONCLUSIONS

By using Westervelt’s source density approach, an analytical formula has been developed
for the far field angular dependence of an absorption-limited parametric array. The
formula provides a simple means for evaluating off-axis performances of parametric array.
The angular amplitude and phase responses of the far field difference frequency signal,
which are in reasonable agreement with experimental results, have been presented for a
primary frequency 6·2 MHz and difference frequency of 270 kHz. Some special cases have
been discussed. In particular, the present formula is shown to be in agreement with
Berktay’s on-axis far field result for a transient parametric array. The angular amplitude
response agrees with Westervelt’s results. Furthermore, the influence of off-axis phase shift
on PSK communications was shown to be negligible if the receiver system obtains its
carrier and timing references from the incoming signal.
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